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Abstract
We define the chiral zero modes’ phase space of the G = SU(n) Wess–
Zumino–Novikov–Witten (WZNW) model as an (n − 1)(n + 2)-dimensional
manifold Mq equipped with a symplectic form �q involving a Wess–Zumino
term ρ which depends on the monodromy M and is implicitly defined (on an
open dense neighbourhood of the group unit) by

dρ(M) = 1
3 tr(M−1 dM)3. (∗)

This classical system exhibits a Poisson–Lie symmetry that evolves upon
quantization into a Uq(s�n) symmetry for q a primitive even root of 1. For
each (non-degenerate, constant) solution of the classical Yang–Baxter equation
we write down explicitly a ρ(M) satisfying equation (∗) and invert the form
�q, thus computing the Poisson bivector of the system. The resulting Poisson
brackets (PB) appear as the classical counterpart of the exchange relations of
the quantum matrix algebra studied previously in Furlan et al (2000 Preprint
hep-th/0003210). We argue that it is advantageous to equate the determinant
D of the zero modes’ matrix

(
a

j
α

)
to a pseudoinvariant under permutations q-

polynomial in the SU(n) weights, rather than to adopt the familiar convention
D = 1. A finite-dimensional ‘Fock space’ operator realization of the factor
algebra Mq/Ih, where Ih is an appropriate ideal in Mq for qh = −1, is
briefly discussed.
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1. Introduction

Two-dimensional conformal current algebra models are known to lead to an unconventional
problem of classical symplectic dynamics defined in terms of a multivalued action [49, 44, 50]
or, equivalently, by a closed—but not exact—3-form [35], depending on a group-valued field.
It has been noted at an early stage of this development [1] that the most interesting new
features of the theory already appear in a finite-dimensional ‘toy model’. The present paper
is devoted to a study of a version of such a finite-dimensional ‘chiral zero modes’ model.
We display its precise relation to the (infinite-dimensional) WZNW theory, reformulate it as
a constrained dynamical system in the case when the underlying group is SU(n), compute
Poisson brackets among the basic dynamical variables for a given non-degenerate solution
of the classical (dynamical) Yang–Baxter equations and demonstrate that they appear as a
(quasi)classical limit of quantum exchange relations considered earlier [32].

1.1. The zero modes’ manifold

Let G be a semisimple compact Lie group of n × n matrices with Lie algebra G. The zero
modes’ manifold of a chiral WZNW model is not uniquely determined by the corresponding
two-dimensional (2D) conformal theory. It depends on the splitting of the G-valued field
g(x0, x1) into chiral factors,

g(x0, x1) = gL(x1 + x0)g−1
R (x1 − x0) (1.1)

which obey a twisted periodicity condition (involving monodromy degrees of freedom),

gC(x + 2π) = gC(x)M C = L,R M ∈ G (1.2)

implying that the 2D field is periodic: g(x0, x1 + 2π) = g(x0, x1). A further arbitrariness is
involved in the factorization of the chiral fields gC(x) into (classical counterparts of ) chiral
vertex operators u(x) and zero modes a; we shall write, in particular, the left movers’ field in
the form

gL(x)Aα = u(x)Aj aj
α (A, j, α = 1, . . . , n). (1.3)

The chiral vertex operators have, by definition, diagonal monodromies so that the
(x-independent) matrix a = (

a
j
α

)
is chosen to diagonalize M:

aM = Mpa Mp = q2p̂ q = e−i π
k q = ei π

k . (1.4)

Here k is the Kac–Moody level appearing as a coupling constant in the WZNW model [50]
and p̂ is a diagonal matrix whose entries define a weight vector belonging to the Weyl alcove
An of the dual to the Cartan subalgebra of G. For G = su(n)

p̂ =


p1 0 . . . 0

0 p2 . . . 0
. . . . . . . . . . . .

0 0 . . . pn

 (1.5)

and the Weyl alcove can be conveniently identified with

An =
{

p = {pi}ni=1, pij := pi − pj > 0 for i < j, P := 1

n

n∑
i=1

pi = 0

}
(1.6)

pj playing thus the role of barycentric coordinates.
While the weights pαj

corresponding to the simple roots αj of G (pαj
= pjj+1 for

G = su(n)) provide an intrinsic characteristic of the state space of (both the chiral and the 2D)
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WZNW model, the zero mode matrix a
j
α is gauge dependent. We shall use this freedom to work

in a ‘covariant but not unitary gauge’ (discussed in section 3) and to equate, for G = SU(n),

the determinant D of
(
a

j
α

)
to a pseudo-invariant under permutations of the pj function of p

(cf [32]),

D := det
(
aj

α

) = Dq(p) :=
∏
i<j

[pij ] for G = SU(n)

(1.7)

[p] := qp − qp

q − q
(qq = 1)

rather than to 1 as done in most related studies [1, 4, 8, 15, 9, 10, 19].

Remark 1.1. We use on purpose different notation for the indices such as A, j, α of u and a

that run in the same range (1.3) since they have rather different nature. While the chiral model
is invariant under left shifts of G (acting on A), it only admits a Poisson–Lie (or quantum
group) symmetry with respect to α, while j labels the diagonal elements of Mp.

1.2. The case n = 2 and its k → ∞ limit: the form �q for SU(2)

The advantage of the ansatz (1.7) (as compared to the conventional D = 1) is exhibited on the
simple example of the SU(2) model space and its q-deformation which we proceed to sketch.
It can also be viewed as an introduction to the general case.

The realization of all irreducible representations (IR) of SU(2) with multiplicity 1 in the
Fock space of a pair of creation and annihilation operators is half a century old (see [46, 12]).
Its classical counterpart is the space C2 regarded as a Kähler manifold with a symplectic form

�1 = (idzα ∧ dz̄α ≡) idzα dz̄α ≡ i(dz1 dz̄1 + dz2 dz̄2). (1.8)

(We omit throughout this paper the wedge sign ∧ for the exterior product of differentials but
keep it for the skew product of vector fields.) The corresponding Poisson bivector,

P1 = i
∂

∂zα

∧ ∂

∂z̄α
(1.9)

yields the PB counterpart of the canonical commutation relations for (bosonic) creation and
annihilation operators:

{z1, z2} = 0 = {z̄1, z̄2} {zα, z̄
β} = iδβ

α . (1.10)

In order to express �1 (1.8) in terms of the above ‘group like’ variable a = (
a

j
α

)
and ‘weight’

p ≡ p12, we set

a =
(

z1 z2

−z̄2 z̄1

)
p := det a = z1z̄

1 + z2z̄
2 (>0 ⇔ p ∈ A2) (1.11)

p̂ = 1
2σ3p. (1.12)

A simple calculation allows us then to rewrite �1 as an exact 2-form:

�1 = −i d tr(p̂ daa−1). (1.13)

The symplectic form �q for the SU(2)k WZNW zero modes (derived for the general SU(n)k
case in section 2) appears as a one-parameter deformation of (1.13):

�q(a,Mp) = k

4π

{
tr
(
daa−1 (2 dMpM−1

p + Mp daa−1M−1
p

))− ρ(a−1Mpa)
}
. (1.14)
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Here Mp is the diagonal matrix defined in (1.4), and ρ is the WZ term:

k

2π
dMpM−1

p = i dp̂ dρ(M) = 1

3
tr(dMM−1)3. (1.15)

(The 3-form on the right-hand side is closed but not exact on G; the complex 2-form ρ can
only be defined on an open dense neighbourhood G0 of the identity of G.)

The phase space Mq is a four-dimensional surface in the five-dimensional space of
variables a

j
α and p, singled out by equation (1.7):

(det a ≡) D = [p] (→p for k → ∞, resp. q → 1). (1.16)

To summarize, for (undeformed) SU(2) creation and annihilation operators the determinant
(1.11) plays the role of a number operator. More precisely, in the quantum theory p ∈ N is
the dimension of the IR of SU(2) spanned by all homogeneous polynomials of the creation
operators a1

α of degree p − 1 (acting on the Fock space vacuum). For p > 0 we can introduce
new matrix variables with determinant 1,

gj
α := 1√

p
aj

α det
(
gj

α

) = 1 (1.17)

preserving the form of �1 (=−i d tr(p̂ dgg−1)). The new variables
(
g

j
α

)
obeying (1.17),

however, would not satisfy the canonical PB relations for creation and annihilation operators.
For q 	= 1 (k finite) a change of variables a

j
α → g

j
α = [p]−1/2a

j
α (that would again give

det a = 1) may become singular, as [k] = 0 for q given by (1.4). From this point of view, the
convention det a = 1 is neither convenient nor always possible.

1.3. Outlook and references

Although the WZNW model was introduced [50] in terms of a multivalued action, its solution
was first given in the axiomatic approach to conformal current algebra models [41, 47]. The
canonical (Lagrangean) approach had to await the discovery of the link between the quantum
exchange relations and the Yang–Baxter equation [5]. It was initiated for the WZNW model
in [14] and was given a strong impetus by [27]. Among early subsequent works [8, 6, 35, 17,
18, 29, 7, 33, 34] we would like to single out the development by Gawȩdzki and co-workers
[35, 29, 36] of a truly canonical first-order formalism adapted to the problem. The present
paper is devoted to a self-contained study of the finite-dimensional zero modes’ problem
(without recurrent appeal to its infinite-dimensional origin). This problem was first singled
out in [1] followed by [4, 15, 30]—among others. It has an interest of its own, exhibiting in a
nutshell a number of properties that attract the attention of both physicists and mathematicians:
Poisson–Lie symmetry [45, 4, 9, 10, 2, 11], r- (R-) matrices (classical and quantum) [13, 45,
28], dynamical r- (R-) matrices [37, 31, 26, 43, 42, 25, 24, 3]. The study of the SU(2)

case in [33] was extended to SU(n) in [38, 32], s�(n) being singled out among other simple
Lie algebras by the fact that the corresponding quantum R-matrices satisfy quadratic (Hecke
algebra) relations. The gauge freedom in the very definition of the zero mode phase space was
discussed in [34] and its BRS (co)homology was studied in [22, 23] (for a concise review see
[21]). The presence of such a freedom allows us, in particular, to avoid the complications of
the unitary gauge advocated in [9, 10].

1.4. Outline of the paper

After sketching (in section 2.1) the derivation of expression (2.10) for �q that generalizes (1.14)
to any compact semisimple Lie group G, we study in section 2.2 an extensionMex

q of the phase
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space Mq for G = SU(n) for which one derives a more manageable symplectic form �ex
q . In

section 2.3 we display the undeformed limit k → ∞ (q → 1) in which the WZ term disappears.
The resulting form �1 can be easily inverted. We also display the Hamiltonian vector fields
corresponding to the constraints χ := log D

Dq (p)
and P := 1

n

∑n
s=1 ps. In particular,

i
∂̂

∂P
�ex

q = i
n∑

s=1

∂̂

∂ps

�ex
q = dχ = dD

D
− dDq(p)

Dq(p)
. (1.18)

Here X̂� means the contraction of the vector field X with the form �; we have, e.g.,

∂̂

∂ps

dpj = δs
j − dpj

∂̂

∂ps

. (1.19)

It is important that these ‘momentum maps’ remain valid after q-deformation (i.e. for finite k).
Section 3 is devoted to inverting the form �ex

q (and �q), thus computing PB among zero modes.
In section 4.1 we demonstrate that the quasiclassical limit (k 
 n, pj� 
 1,

pj�

k
finite) of

the quantum exchange relations of [38, 32, 39] reproduces the PB relations of section 3.
In the rest of section 4 we review the Uq(s�n) symmetry of the quantum matrix algebra and
its operator realization.

2. Zero modes’ phase space from chiral WZNW 2-form

2.1. From a 2D canonical 3-form to the zero modes’ symplectic form

The canonical approach to a field theory in D-dimensional spacetime formulated in [35]
(where its sources are cited and reviewed) starts with a closed (D + 1)-form ω (=dL(x) if a
Lagrangian D-form L(x) exists). It allows us to read off the equations of motion while the
integral over a (D − 1)-dimensional space-like surface provides the symplectic form of the
theory. A form of this type, called symplectic density, was recently (partly rediscovered and)
applied to Yang–Mills, general relativity, Chern–Simons and supergravity theories [40]. In
the case of the WZNW model, the 3-form ω can be written as the sum of an exact form and
the canonical invariant closed 3-form on the group G,

ω = d

{
1

2
tr
(

ig−1 dg +
π

k
J
)

∗J
}

+
k

12π
tr(g−1 dg)3 (2.1)

where J is the current 1-form and ∗J is its Hodge dual:

J(x) = jµ(x) dxµ ∗J(x) = εµνj
µ(x) dxν (εµν = −ενµ, ε01 = 1 = ε10). (2.2)

We shall sum up without derivation the implications of equation (2.1).
The equations of motion, obtained as the pull-back of the contractions of ω with the

vertical vector fields δ
δjµ(x)

and g(x)X δ
δg(x)

, read

J = k

2π i
g−1 dg dJ +

2π i

k
J2 = 0 ⇒ d(J + ∗J) = 0. (2.3)

They imply the existence of left and right (Nöther) currents depending on a single light cone
variable,

jR = 1
2 (j 0 + j 1) jL = 1

2g(j 1 − j 0)g−1 ∂+jR = 0 = ∂−jL

for ∂± = 1
2 (∂1 ± ∂0) (2.4)

and the factorization (1.1) of g(x0, x1).
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The symplectic form �(2) can be expressed in terms of either of the two chiral currents:

�(2) =
∫ π

−π

ω dx1

= −
∫ π

−π

dx tr

(
i d(jL dgg−1) +

k

4π
dgg−1(dgg−1)′

)
=
∫ π

−π

dx tr

(
i d(jRg−1 dg) +

k

4π
g−1 dg(g−1 dg)′

)
. (2.5)

Inserting the factorized expression (1.1) for g in (2.5), one can split �(2) into chiral symplectic
forms

�(2) = �(gL,M) − �(gR,M) (2.6)

where

�(gC,M) = k

4π

{
tr

(∫ π

−π

dx
(
g−1

C dgC

(
g−1

C dgC

)′)
+ b−1

C dbC dMM−1

)
− ρ(M)

}
(2.7)

with

bC := gC(−π) M = b−1
C gC(π)

(=g−1
C (x)gC(x + 2π)

)
C = L,R. (2.8)

The cumbersome (ill defined) WZ term ρ(M) (satisfying (1.15)) has been added and subtracted
from the two chiral terms to ensure d� = 0. An alternative approach, introducing quasi-
Poisson manifolds [2] (for which the Jacobi identity satisfied by proper PB is replaced by a
weaker condition) is developed in [11].

Finally, substituting gL(x) by its expression (1.3), we find

�(gL,M) = �(u,Mp) + ωq(Mp) + �q(a,Mp) (2.9)

where

�q(a,Mp) = k

4π

{
tr
(
daa−1(2 dMpM−1

p + Mp daa−1M−1
p

))− ρ(a−1Mpa)
}− ωq(Mp)

(2.10)

and ωq is an arbitrary closed 2-form (which will be restricted further by some symmetry
conditions). For G = SU(2) there is a single variable p, hence ωq(Mp) ≡ 0 and (2.10)
coincides with (1.14).

A detailed derivation of the results formulated in this subsection will be presented
elsewhere.

2.2. Basis of right invariant 1-forms: An extended phase space and a privileged choice of ωq

for G = SU(n)

We shall now write down the first two terms in expression (2.10) as sums of products of right
invariant forms. To this end we shall use the Cartan–Weyl basis {hi, eα}, α running through
the positive roots of GC (in its n-dimensional fundamental representation) satisfying

[hi, hj ] = 0 [hi, e±α] = ±2
(α|αj )

|αj |2 e±α [eαi
, e−αj

] = δijhj (2.11)

(i, j = 1, . . . , r := rank G), and shall write

p̂ =
r∑

j=1

pαj
hj with tr(hihj ) = δi

j (and tr(eαe−β) = δαβ) (2.12)



Chiral zero modes of the SU(n) Wess–Zumino–Novikov–Witten model 3861

(thus {hi} and {hj } define dual bases of diagonal matrices). Let further �j,�±α and dD
D

be
the corresponding right invariant 1-forms in T ∗Gex

C ,

Gex
C := (G × R+)C (2.13)

defined by

�j = −i tr(a−1hj da) �±α = −i tr(a−1e∓α da)
dD

D
= tr(daa−1). (2.14)

It then follows that

−i daa−1 =
r∑

j=1

�jhj +
∑
α>0

(�αeα + �−αe−a) − i

n

dD

D
11 (2.15)

where D = det a > 0 and 11 is the n × n unit matrix.
If G is compact, then the forms �j are real while �−α are complex conjugate to �α. We

also note that the (Lie algebra valued) 1-form (2.15) is not closed but defines a flat connection,
the �s satisfying the Cartan–Maurer relations. We shall use, in particular,

d�j = i
∑
α>0

(�j |α)�α�−α
(
(�j |α�) = δ

j

�

)
(2.16)

�j being the fundamental weights of G.

Inserting (2.12) into the first term on the right-hand side of (2.10) and using (1.15) and
(2.14), we deduce

k

2π
tr
(
daa−1 dMpM−1

p

) = i tr(daa−1p̂) =
r∑

j=1

dpαj
�j . (2.17)

The second term is expressed as a sum of products of conjugate off-diagonal forms:

k

4π
tr
(
daa−1Mp daa−1M−1

p

) = k

4π
(q − q)

∑
α>0

[2pα]�α�−α (2.18)

where pα is a linear functional on the roots:

pα =
r∑

j=1

(�j |α)pαj
for α =

r∑
j=1

(�j |α)αj . (2.19)

Here (�j |α) ∈ Z+ and we have the relation

AdMp
eα := MpeαM

−1
p = q2pαeα. (2.20)

At this point we shall specialize to the case G = SU(n) and will view the (n − 1)(n + 2)-
dimensional symplectic manifold Mq = Mq(n) as a submanifold of codimension 2 in the
extended (n(n + 1)-dimensional) phase space Mex

q spanned by pi and a
j
α (i, j, α = 1, . . . , n)

regarded as independent variables:

Mq =
{(

pi, a
j
α

) ∈ Mex
q ; P := 1

n

n∑
s=1

ps = 0, χ := log
D

Dq(p)
= 0

}
. (2.21)

We introduce the Weyl basis
{
e

j

i

}
of n × n matrices satisfying

e
j

i e
�
k = δ

j

k e
�
i

(
e

j

i

)�
k

= δ�
i δ

j

k i, j, k, � = 1, . . . , n. (2.22)
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The positive roots αij (i < j) of su(n) correspond to raising operators, e
j

i , while −αij are
associated with lowering operators, ei

j . Equation (2.15) now assumes a simple explicit form:

−i daa−1 = �
j

ke
k
j

≡
n∑

j,k=1

�
j

ke
k
j

 �
j

k = −i tr
(
e

j

k daa−1) = −i daj
σ (a−1)σk . (2.23)

The general Cartan–Maurer relations (which incorporate (2.16)) are written simply as

d�
j

k = i�j
s �

s
k. (2.24)

Recalling that relation (1.7) is invariant under simultaneous permutation of the rows of
the matrix

(
a

j
α

)
and of pj (i.e. under the action on both sides of the su(n) Weyl group), we

shall also require permutation invariance of the extended form ωex
q (p). We shall determine

ωq(Mp) = ωex
q (p)|P=0 by further demanding that the symplectic form �ex

q on Mex
q ,

�ex
q =

n∑
s=1

dps�
s
s − k

4π

(q − q)
∑
j<�

[2pj�]�j

��
�
j + ρ(a−1Mpa)

− ωex
q (p) (2.25)

will reduce to �q on the surface Mq ⊂ Mex
q . In order to implement this last condition, we

shall require that the terms involving dP cancel in the difference

−ωq(Mp) =
(

−i dP
dDq(p)

Dq(p)

)
− ωex

q (p). (2.26)

Inserting the expression (cf (1.7)) for Dq(p) which implies

dDq(p)

Dq(p)
= π

k

∑
j<�

cot
(π

k
pj�

)
dpj� (2.27)

we find a form ωex
q (p) satisfying all the above conditions:

ωex
q (p) = i

π

k

∑
j<�

cot
(π

k
pj�

)
dpj dp�. (2.28)

Indeed, using the relation

pj = P +
1

n

n∑
s=1

pjs (2.29)

we deduce

ωq(Mp) = iπ

nk

∑
1�j<�<m�n

(
cot

(π

k
pj�

)
+ cot

(π

k
p�m

)
− cot

(π

k
pjm

))
dpj� dp�m

(2.30)

(note that for n = 2 there is no triple j, �,m satisfying the above inequalities so that the form
ωq(Mp) vanishes, as it should, while ωex

q (p) (2.28) reduces to a single term: ωex
q (p) =

iπ
k

cot
(

π
k
p12

)
dp1 dp2).

We observe the relative simplicity of the extended symplectic form (2.25), (2.28) as
compared with �q (obtained from (2.10) by inserting (2.17) with

pαj
= pjj+1 �j = n − j

n

j∑
s=1

�s
s − j

n

n∑
s=j+1

�s
s (2.31)

(2.18) and (2.30)). It is, therefore, rewarding to know that the PB we are interested in can be
computed using the simpler expression �ex

q , as we shall see in section 3. In the next subsection
we shall display this property for the k → ∞ limit theory.
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2.3. Right invariant vector fields: the limit k → ∞. Dirac brackets

It is easy to display the basis of right invariant vector fields
{

∂
∂p�

, V k
j

}
dual to the basis{

dp�,�
j

k

}
of 1-forms:

V k
j = i tr

(
ek
j a

∂

∂a

)
= iak

σ

∂

∂a
j
σ

. (2.32)

Indeed, contracting the form ��
m (2.23) with V k

j , we find

V̂ k
j ��

m = tr
(
ek
jaa−1e�

m

) = δ�
j δ

k
m V̂ k

j dp� = 0. (2.33)

Obviously,

∂̂

∂pj

��
m = 0

∂̂

∂pj

dp� = δ
j

� .

This would allow us to invert the form �ex
q but for the WZ term.

We shall profit from the above remark taking the limit k → ∞ in which the WZ term
disappears. Indeed, using the expression for q in (1.4), we find

lim
k→∞

k

2π
(q − q) = i

1

2
lim

k→∞
[2p] = p (2.34)

and hence,

�ex
1 (a, p) =

n∑
s=1

dps�
s
s + i

∑
1�j<��n

pj��
j

��
�
j − ω1(p)

= d
n∑

s=1

ps�
s
s − i

∑
1�j<��n

dpj dp�

pj�

. (2.35)

Here we have set

lim
k→∞

k

4π
ρ(a−1Mpa) = 0. (2.36)

In fact, since the right-hand side of (2.35) is a closed 2-form, it follows that

lim
k→∞

k

4π
tr(dMM−1)3 = 0 for M = a−1Mpa. (2.37)

We conclude that k
4π

ρ can also be chosen to vanish in this limit—a property that can be derived
from the expression for ρ(a−1Mpa) given in section 3.

As anticipated, it is straightforward to invert the 2-form (2.35). The result can be encoded
in the Poisson bivector

P =
n∑

s=1

V s
s ∧ ∂

∂ps

+ i
∑

1�j<��n

1

pj�

(
V �

j ∧ V
j

� − V
j

j ∧ V �
�

)
(2.38)

which gives rise to the following PB:

{pj , p�} = 0
{
aj

α, p�

} = iδj

� a
j
α (2.39)

and {
aj

α, a
�
β

} = r(1)(p)
j�

j ′�′a
j ′
α a�′

β

(
i.e. {a1, a2} = r

(1)

12 (p)a1a2
)

(2.40)

where the undeformed classical dynamical r-matrix is given by

r(1)(p)
j�

j ′�′ =
{

i
pj�

(
δ

j

j ′δ
�
�′ − δ

j

�′δ
�
j ′
)

for j 	= �

0 for j = �
. (2.41)
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For a general Poisson manifold M with a pair of second class constraints P and χ the
Dirac brackets {f, g}D [20] of two arbitrary functions on M are expressed in terms of their
PB as

{f, g}D = {f, g} +
1

{P, χ} ({f, P }{χ, g} − {f, χ}{P, g}) . (2.42)

We shall verify that in the case at hand

{pj�, P } = 0 = {pj�, χ} {
aj

α, χ
} = 0. (2.43)

The first pair of equations implies that pj� are ‘observables’ on Mq ⊂ Mex
q , so that

{pj�, f }D = {pj�, f } for any function f on Mex
q ; in particular,{

pj�, a
m
α

} = i
(
δm
� − δm

j

)
am

α = {
pj�, a

m
α

}
D
. (2.44)

The last equation (2.43) is sufficient to assert that the PB (2.40) coincide with the corresponding
Dirac brackets.

Although it is easy to verify (2.43) directly, using (2.38)–(2.40), we shall give a more
general derivation that will apply to the case of finite k (q 	= 1) as well. To this end we shall
use the momentum maps

i
∂̂

∂P
�1 = i

n∑
s=1

∂̂

∂ps

�1 = i
n∑

s=1

�s
s −

∑
1�j<��n

dpj�

pj�

= dχ − 1

n

n∑
s=1

V̂ s
s �1 = dP.

(2.45)

Displaying the Hamiltonian vector fields corresponding to χ and P, equation (2.45) allows us
to compute any PB of the constraints; in particular,{

χ, a
j
α

} = i
∂̂

∂P
daj

α = 0 {χ, pj�} = i
∂̂

∂P
dpj� = 0

{pj�, P } = 1

n

n∑
s=1

V̂ s
s dpj� = 0 {P, χ} = −i.

(2.46)

We find, on the other hand,{
aj

α, p�

}
D

= {
aj

α, p�

}
+ i
{
aj

α, P
}{χ, p�} = iaj

α

(
δ

j

� − 1

n

)
. (2.47)

3. Inverting Ωex
q : PB in Mq(n)

3.1. The WZ form

It was Gawȩdzki [35] (see also [29]) who introduced in the early 1990s the WZ 2-form ρ(M)

and described its relation to the non-degenerate (constant) solutions of the classical Yang–
Baxter equation (CYBE). Gradually, a more general and complete understanding of such a
relation has been worked out [10, 30]. We shall only deal here with a special case of the
outcome of [30] corresponding essentially to the early discussion in [29].

We shall again start with an arbitrary semisimple matrix Lie group G with Lie algebra G.

For an arbitrary pair {ta}, {Tb} of dual bases in G, we can write the Killing metric tensor ηab

and its inverse, ηab, as

ηab = tr(TaTb) ηab = tr(tatb) for tr(taTb) = δa
b . (3.1)

In the Cartan–Weyl basis {Ta} = {hi, e±α} we have {ta = hi, e∓α} and the nonzero elements
of η are

ηij = tr hihj = (αi |αj ) ηαβ = tr eαeβ = δα,−β (3.2)

(where the norm square of the highest root is fixed to 2).
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The polarized Casimir invariant C12 ∈ Sym (G ⊗ G), given (in Faddeev’s notation [28])
by

C12 = ηabt
a
1 tb2 (=Ta ⊗ ta ≡ ta ⊗ Ta) = hi1h

i
2 +

∑
α

eα1e−α2 (3.3)

where the sum is taken over all, positive and negative, roots α, plays the role of the unit
operator on G:

CX := tr2(C12X2) = X (≡X1) for X ∈ G. (3.4)

Let r12 = −r21 (∈ G ∧ G) be a solution of the modified CYBE

[r12, r13 + r23] + [r13, r23] = [C12, C23] (=−fabct
atbtc) (3.5)

and let r be the corresponding operator (r : G → G) defined by taking the trace in the second
argument as in (3.4):

rX := tr2(r12X2) for X ∈ G ⇒ r12 = rC12. (3.6)

Proposition 3.1. Let the 2-form ρ(M) be written in terms of a skew-symmetric kernel
K(M)12 ∈ G ∧ G for M ∈ G0 where G0 is an open dense neighbourhood of the group unit in
which the operator (1 − AdM)r + 1 + AdM,AdMX := MXM−1, is invertible, and let K(M)

be the corresponding operator K(M) : G → G defined as in (3.6),

ρ(M) = 1
2 tr(dMM−1K(M) dMM−1) (tr(XK(M)X) = 0 ∀X ∈ G). (3.7)

Assume further that

K(M) = ((1 + AdM)r + 1 − AdM)((1 − AdM) r + 1 + AdM)−1 (3.8)

so that K(1) = r. Then ρ(M) satisfies

dρ(M) = 1
3 tr(dMM−1)3 (3.9)

iff r12 (related to r by (3.6)) satisfies the modified CYBE (3.5).

The statement is a corollary of propositions 1 and 2 of [30]; see also the earlier discussion
in [29].

Remark 3.1. The modified CYBE (3.5) for r12 is equivalent to the standard CYBE[
r±

12, r
±
13 + r±

23

]
+
[
r±

13, r
±
23

] = 0 for r±
12 = r12 ± C12. (3.10)

In fact, [29] deals with equation (3.10).

Remark 3.2. Using (3.8), it is easy to check that the skewsymmetry of K(M) is equivalent
to that of r, tK(M) = −K(M) ⇔ t r = −r where the transposition t is with respect to the
invariant bilinear form tr.

Remark 3.3. One can consider a more general ansatz of type (3.8) allowing the operator r

to depend on M. Then one has to deal with a ‘dynamical’ version of the (modified) CYBE
including differentiation in the group parameters—see Eqs. (1.3) and (3.8) of [30]. One argues
in [10] that a constant classical r-matrix cannot correspond to a compact group G. It is well
known, indeed, that the modified CYBE (3.5) has no real solution in G ∧ G for G compact.
We shall however stick to the above simple choice which uses a complex 2-form ρ. As noted
in the introduction, the use of the simple constant r-matrix for the PB of the zero modes a

j
α

is perfectly admissible because the freedom in their choice does not affect the properties of
uA

j (x) which always transform covariantly under left shifts of the compact group G.
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Using (3.7) and (3.8), we can present the WZ 2-form in (2.10) as

ρ(a−1Mpa) = 1
2 tr{(dMpM−1

p − A−(daa−1))Ka(dMpM−1
p − A−(daa−1))}. (3.11)

Here and below we are using the operators

A± := 1 ± AdMp
A−dMpM−1

p = 0 = (A+ − 2) dMpM−1
p (3.12)

while Ka is given by

Ka := AdaK(a−1Mpa)Ad−1
a = (A+r

a + A−)(A−ra + A+)
−1

ra := AdarAd−1
a (3.13)

(Ka and ra are skewsymmetric together with K(M) and r).
We note that ρ(a−1Mpa) coincides with its extension on Mex

q (n). This is obviously true
for the 3-form dρ(M) (3.9) for M = a−1Mpa. Indeed, the contribution of the term proportional
to dP is given by

dρex(a−1Mpa) − dρ(a−1Mpa) = 2π i

k
dP tr(dMM−1)2 ≡ 0. (3.14)

(Remember that the diagonal monodromy Mp enters �ex
q through

dMpM−1
p = 2π i

k

n∑
s=1

dpse
s
s ≡ 2π i

k
(dP 11 + dp̂) (3.15)

cf (2.12), and det a is not set equal to Dq(p).) Since ρ is defined by equation (3.9), it can be left
unchanged in the extended phase space. This is certainly true for expressions (3.11)–(3.13)
provided we take—as we will—the standard solution of the modified CYBE (3.5)

r12 =
∑
α>0

(eα ⊗ e−α − e−α ⊗ eα) ≡
∑
α>0

(
e1αeα

2 − eα
1 e2α

)
(eα := e−α) (3.16)

for which

re±α = ±e±α for α > 0 rhi = 0 = r11. (3.17)

3.2. Poisson bivector for �ex
q

We shall first establish relation (1.18) which, according to (2.46), is sufficient to prove that
the PB of a

j
α can be computed using the form �ex

q (2.25), (2.28) on Mex
q (n). Equation (1.18)

follows from (2.26)–(2.28) and (3.14) (together with the subsequent argument), which imply

∂̂

∂P
ρ(a−1Mpa) = 0. (3.18)

Similarly, one can deduce
n∑

s=1

V̂ s
s ρ(a−1Mpa) = 0 ⇒ − 1

n

n∑
s=1

V̂ s
s �ex

q = dP (3.19)

which extends the second equation (2.45) to q 	= 1.

Using (3.11)–(3.13), we can write the extended symplectic form (2.25) as

�ex
q =

n∑
s=1

dps�
s
s +

k

2π

∑
j 	=�,r 	=s

�
j

��
r
s [(ω − X)−1]�sjr +

∑
j,r 	=s,t 	=q

dpj�
r
sX

jt

jq [(ω − X)−1]qs
tr

− π

2k

∑
j 	=�

dpj dp�

ωjl + X
j�

j� +
∑

s 	=t,s ′ 	=t ′
X

js

jt [(ω − X)−1]tt
′

ss ′X
s ′�
t ′�

 (3.20)
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where

ωj� := i cot
π

k
pj� ω

nj

m� = −ωj�δj
m δn

� = ωnj δn
� δ

j
m (3.21)

so that

ωex
q (p) = π

k

∑
j 	=�

ωj�dpj dp�

A+

A−
e

j

� = −ωj� e
j

� ≡ ω
nj

m� em
n (3.22)

(because AdMp
e

j

� = q2pj�e
j

� ) and X
nj

m� is defined as

rae
j

� = −X
nj

m�e
m
n ⇒ X12 = −Ada1a2r12 (X12 = −X21). (3.23)

To derive (3.21), one uses (2.10), (3.11), (2.23) and (3.15) as well as (3.21), (3.22). This
allows us to present �ex

q as

�ex
q = −ωex

q (p) − k

8π
tr
{
(A−daa−1)(A+ − KaA−)(daa−1)

+ 2 dMpM−1
p (2 − KaA−)(daa−1) + dMpM−1

p Ka
(
dMpM−1

p

)}
(3.24)

Note that the only nonzero contribution of the diagonal elements of daa−1 comes through the
term

− k

2π
tr(dMpM−1

p daa−1) =
n∑

s=1

dps�
s
s. (3.25)

One also uses relation (3.13) and its corollary

(A+ − KaA−)ra = KaA+ − A− ⇒ A+ − KaA− = 4AdMp
(raA− + A+)

−1 (3.26)

as well as

k

4π
tr dMpM−1

p KaA−(daa−1) = k

2π
tr dMpM−1

p ra

(
ra +

A+

A−

)−1

daa−1

=
∑

j,r 	=s,t 	=q

dpj�
r
sX

jt

jq[(ω − X)−1]qs
tr (3.27)

and

tr dMpM−1
p Ka

(
dMpM−1

p

) = tr dMpM−1
p ra

(
dMpM−1

p

)
+ tr dMpM−1

p ra

[(
1 +

A−
A+

ra

)−1

− 1

] (
dMpM−1

p

)
(3.28)

where the second term on the right-hand side gives

tr
(
ra dMpM−1

p

) [(
1 +

A−
A+

ra

)−1
A−
A+

ra

] (
dMpM−1

p

)
= 4π2

k2

∑
j 	=�

dpj dp�

∑
s 	=t,s ′ 	=t ′

X
js

jt [(ω − X)−1]tt
′

ss ′X
s ′�
t ′� . (3.29)

The PB derived from �ex
q can be compactly written in terms of the Poisson bivector

P =
n∑

m=1

V m
m ∧ ∂

∂pm

+
π

2k

∑
n 	=m

ωnm
(
V n

m ∧ V m
n − V m

m ∧ V n
n

)−
∑

n,m,s,t

Xns
mtV

m
n ∧ V t

s

 (3.30)

obeying the operator equation

P12
(
�ex

q

)
23

= I13. (3.31)
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Here I is the mixed (1, 1)-tensor

I =
n∑

j=1

(
∂

∂pj

⊗ dpj + V
j

j ⊗ �
j

j

)
+
∑
j 	=�

V
j

� ⊗ ��
j (3.32)

which plays the role of the identity operator in the space of 1-forms �, resp. vector fields X

in the sense

�I :=
n∑

j=1

�

(
∂

∂pj

)
dpj +

n∑
j,�=1

�
(
V

j

�

)
��

j = � (�(X) ≡ X̂�)

(3.33)

IX :=
n∑

j=1

∂

∂pj

dpj(X) +
n∑

j,�=1

V
j

� ��
j (X) = X.

We find, in particular,

{a1, a2} ≡ P12(a1, a2) = r12(p)a1a2 − π

k
a1a2r12 (3.34)

where

r(p)
j�

j ′�′ =
{

iπ
k

cot
(

π
k
pj�

)(
δ

j

j ′δ
�
�′ − δ

j

�′δ
�
j ′
)

for j 	= �

0 for j = �
(3.35)

and

r
αβ

α′β ′ = −εαβ δα
β ′ δ

β

α′ (3.36)

(cf (3.23) for the standard solution (3.16), (3.17)).
The other two basic PB coincide with those in (2.39) (and the Dirac bracket

{
a

j
a , p�

}
with

(2.47)).
The operators in the triple tensor product Cn × Cn × Cn

r±
ab(p) = rab(p) ± π

k
Cab a, b = 1, 2, 3 a < b (3.37)

satisfy the dynamical CYBE [26][
r±

12(p), r±
13(p) + r±

23(p)
]

+
[
r±

13(p), r±
23(p)

]
+ Alt(dr±) = 0 (3.38)

where

Alt(dr±) := −i
n∑

j=1

∂

∂pj

(
e

j

j 1
r±

23(p) − e
j

j 2
r±

13(p) + e
j

j 3
r±

12(p)
) ≡ Alt(dr). (3.39)

As the verification of (3.38) requires some work, we sketch the main steps in the appendix.

4. Quantization

4.1. Quantum exchange relations and their quasiclassical limit

The exchange relations for the quantum matrix algebra—which we shall again denote
by Mq—were derived earlier on the basis of an analysis of the braiding properties
of SU(n)k WZNW 4-point blocks [32, 39] satisfying the Knizhnik–Zamolodchikov
equations [41, 48]. They have the form [32]

[qpij , qpk�] = 0 qpij a�
α = a�

αq
pij +δ�

i −δ�
j (4.1)

R̂(p)±1a1a2 = a1a2R̂
±1

(4.2)
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where(
q

1
n R̂
)±1
ii+1 = q±111ii+1 − Aii+1 A

α1α2
β1β2

= qεα2α1 δ
α1
β1

δ
α2
β2

− δ
α1
β2

δ
α2
β1

(4.3)

qεα1α2 =


q−1 for α1 < α2

1 for α1 = α2

q for α1 > α2

q = e−i π
h h = k + n (4.4)

(
q

1
n R̂(p)

)±1
ii+1 = q±111ii+1 − Aii+1(p) A

i1i2
j1j2

(p) = [pi1i2 − 1]

[pi1i2 ]

(
δ

i1
j1
δ

i2
j2

− δ
i1
j2
δ

i2
j1

)
. (4.5)

Both Aii+1 =: Ai and Aii+1(p) =: Ai(p) satisfy the Hecke algebra relations

AiAi+1Ai − Ai = Ai+1AiAi+1 − Ai+1 A2
i = [2]Ai

[Ai,Aj ] = 0 for |i − j | > 1. (4.6)

It remains to verify that the quasiclassical limit of these relations indeed reproduces the PB
relations of section 3.

One can introduce two deformation parameters: 1
k

and the (implicit in common notation)
Planck constant h̄ (see [1]). If one ascribes to the physical quantities k̃ and p̃ the dimension
of action, then our dimensionless numbers k and p shall be written as k = k̃

h̄
and p = p̃

h̄
.

We shall distinguish the quasiclassical limit (h̄ → 0) from the undeformed limit (k → ∞)

without using the parameter h̄, by characterizing the second one by

k → ∞ pj� finite
pj�

k
→ 0 (4.7)

while setting for the first one of interest

k

n
→ ∞ pj� → ∞ pj�

k
finite (j < �). (4.8)

The substitution of the level k by the height h = k + n in the quantum expression for q (4.4)
is consistent with (4.8) but we are only aware of an explanation of its necessity that uses the
full (with infinite number of degrees of freedom) WZNW model which involves the Sugawara
formula expressing the stress energy tensor as a normal square of the SU(n) current (see
[41, 47]).

Let P be the permutation operator for either set of indices, j, �, . . . or α, β, . . .:

P12 = (
P

j1j2
�1�2

) = (
δ

j1
�2

δ
j2
�1

)
or P12 = (

P
α1α2
β1β2

) = (
δ

α1
β2

δ
α2
β1

)
(4.9)

and let 1112 be the corresponding unit operator (e.g., 11j1j2
�1�2

= δ
j1
�1

δ
j2
�2

). Then we can write

R
α1α2
β1β2

= (R̂P )
α1α2
β1β2

= q
1
n

(
(q − qεα2α1 )P

α1α2
β1β2

+ 11α1α2
β1β2

)
(4.10)

R(p)
j1j2
�1�2

= (R̂P )
j1j2
�1�2

= q
1
n

(
qpj1j2

[pj1j2 ]
P

j1j2
�1�2

+
[pj1j2 − 1]

[pj1j2 ]
11j1j2

�1�2

)
. (4.11)

Setting now

q = 1 − i
π

k
+ O

(
π2

k2

) (
q

1
n = 1 + i

π

nk
+ O

(
π2

k2

))
[p − 1]

[p]
= 1 − π

k
cot

(
π

k
p

)
+ O

(
π2

k2

)
(4.12)

we find

R12 = 1112 + i
π

k
r−

12 + O
(

π2

k2

)
R(p)12 = 1112 + ir−

12(p) + O
(

π2

k2

)
(4.13)
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where

r−
12 = r12 − C12 r

α1α2
β1β2

= −εα1α2P
α1α2
β1β2

C12 = P12 − 1

n
1112 (4.14)

r−
12(p) = r12 − C12 r(p)

j1j2
�1�2

= i
π

k
cot

(
π

k
pj1j2

) (
δ

j1
�1

δ
j2
�2

− δ
j1
�2

δ
j2
�1

)
. (4.15)

The reason why we are keeping the factor π
k

in the definition of r12(p) is that it has a nonzero
undeformed limit since

lim
k→∞

π

k
cotg

(
π

k
p

)
= 1

p
. (4.16)

Taking into account that [C12, a1a2] = 0, we thus recover the PB relations of section 3.2.

4.2. Uq(s�n) symmetry of the exchange relations

Let, for G0 � M ≡ (
Mi

j

)n
i,j=1,M

n
n 	= 0 	= det

(
Mn−1

n−1 Mn−1
n

Mn
n−1 Mn

n

)
etc and

M = q
1
n
−1M+M

−1
− M+ = N+D M−1

− = N−D D = (
dαδα

β

)
(4.17)

N+ =


1 f1 f12 . . .

0 1 f2 . . .

0 0 1 . . .

. . . . . . . . . . . .

 N− =


1 0 0 . . .

e1 1 0 . . .

e21 e2 1 . . .

. . . . . . . . . . . .

 (4.18)

where the common diagonal matrix D has unit determinant: d1d2 . . . dn = 1. It can be deduced
from (4.1), (4.2) and M = a−1Mpa that

[R̂
±
,M2±M1±] = 0 R̂M2−M1+ = M2+M1−R̂. (4.19)

It is known that equations (4.19) for the matrices M± are equivalent to the defining relations
of the quantum universal enveloping algebra Uq := Uq(s�n) [16] that is paired by duality to
Fun(SLq(n)) [28]. The Chevalley generators of Uq are related to the elements of the matrices
(4.17), (4.18) by ([28], see also [34])

di = q�i−1−�i (i = 1, . . . , n,�0 = 0 = �n)

ei = (q − q)Ei fi = (q − q)Fi

(q − q)f12 = f2f1 − qf1f2 = (q − q)2(F2F1 − qF1F2) etc

(q − q)e21 = e1e2 − qe2e1 = (q − q)2(E1E2 − qE2E1) etc.

(4.20)

Here �i are the fundamental co-weights of s�(n) related to the co-roots Hi by Hi =
2�i − �i−1 − �i+1; Ei and Fi are the raising and lowering operators satisfying

[Ei, Fj ] = [Hi]δij q�iEj = Ejq
�i+δij q�iFj = Fjq

�i−δij

[Ei,Ej ] = 0 = [Fi, Fj ] for |j − i| � 2

[2]XiXi±1Xi = Xi±1X
2
i + X2

i Xi±1 for X = E,F.

(4.21)
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The exchange relations (4.1), (4.2) imply

M1±Pa1 = a2R̂
∓1

M2± (4.22)

(see [32]). It follows that these exchange relations are invariant under the coaction of Uq,[
Ea, a

i
α

] = δaα−1a
i
α−1q

Ha
[
qHaFa, a

i
α

] = δaαqHaai
α+1

(4.23)
qHaai

α = ai
αq

Ha+δaα−δaα−1 a = 1, . . . , n − 1.

We note that the centralizer of qpi
(∏n

i=1 qpi = 1
)

in the algebra (4.1), (4.2) (i.e. the maximal
subalgebra commuting with all qpi ) is spanned by Uq over the field Q(q, qpi ) of rational
functions of qpi .

4.3. Operator realization

We shall sketch and briefly discuss the finite-dimensional Fock-like space realization of the
quantum matrix algebra of [32].

The ‘Fock space’ F and its dual F ′ are defined as Mq-modules with one-dimensional
Uq-invariant subspaces of multiples of (nonzero) bra and ket vacuum vectors 〈0| and |0〉 (such
that 〈0|Mq = F ′,Mq |0〉 = F ) satisfying

ai
α|0〉 = 0 for i > 1 〈0|aj

α = 0 for j < n

qpij |0〉 = qj−i|0〉 〈0|qpij = qj−i〈0| (4.24)

(X − ε(X))|0〉 = 0 = 〈0|(X − ε(X)) ∀X ∈ Uq

with ε(X) the co-unit. The duality between F and F ′ is established by a bilinear pairing 〈 · | · 〉
such that

〈0|0〉 = 1 〈�|A|�〉 = 〈�|A′|�〉 (4.25)

where A → A′ is a linear anti-involution (transposition) of Mq defined for generic q by

Di (p)
(
ai

α

)′ = ãα
i := 1

[n − 1]!
Eαα1 ...αn−1εii1...in−1a

i1
α1

. . . ain−1
αn−1

(qpi )′ = qpi . (4.26)

Here Di (p) stands for the product

Di (p) =
∏

j<�,j 	=i 	=�

[pj�]
(⇒[

Di (p), ai
α

] = 0 = [
Di (p), ãα

i

])
. (4.27)

For the definition of the Uq- and, respectively, the ‘dynamical’ Levi-Civita tensors
Eα1α2...αn , εi1i2...in see [38, 32]. The anti-involution (4.26) extends the known transposition
of Uq determined by its action on the Chevalley generators (see section 3 of [34]),

Ei
′ = Fiq

Hi−1 Fi
′ = q1−Hi Ei (qHi )′ = qHi (4.28)

to the quantum matrix algebra (cf section 3.1 and appendix B of [32]).
The space F admits a canonical basis of weight vectors whose inner product can be

computed (see section 3.2 of [32]). For n = 2 the basis has the simple form

|p,m〉 = (
a1

1

)m(
a1

2

)p−1−m|0〉 0 � m � p − 1 (p ≡ p12) (4.29)
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and the inner product is given by

〈p′,m′|p,m〉 = δpp′δmm′qm(p−1−m)[m]![p − 1 − m]!. (4.30)

For the deformation parameter q appearing in (4.4),

q = e−i π
h h = k + n ⇒ qh = −1 (4.31)

i.e. q a (here, even) root of unity, the Fock space has an infinite-dimensional Uq invariant
subspace of null vectors orthogonal to any vector in F . In the n = 2 case all null vectors belong
to the set Ih|0〉 where Ih is the ideal generated by [hp], [hH ], qhp + qhH ,

(
ai

α

)h
, i, α = 1, 2.

The definition of the ideal Ih can be generalized to any n � 2 assuming that it includes the hth
powers of all minors of the quantum matrix

(
ai

α

)
. For n = 2 the factor space Fh is spanned

by vectors of the form (4.29) with 0 < p < 2h and m in the range 0 � m � p − 1, for
1 � p � h, and p − h � m � h − 1 for h + 1 � p � 2h − 1. It splits into a direct sum of
2h − 1 irreducible representations of Uq(s�2) of total dimension h2.

For general n and generic q (i.e. for q not a root of unity) the space F has been proved to
be a model space for Uq (see section 3.1 of [32]). The question of what should be viewed as
a model space for the reduced Uq (Uq factored by its maximal ideal) for q satisfying (4.31)
appears to be unsettled. If we define it as the direct sum of integrable representations (those
with 0 < p < h, for n = 2) of multiplicity 1, then the question arises whether there is a
natural (say, a BRS type) procedure that would reduce Fh to such a sum. A BRS procedure
was introduced in [22, 23] for the tensor product of two copies of Fh—corresponding to the
left and right movers’ zero modes of an SU(2) WZNW model. It would be interesting to
pursue a similar approach to the problem at hand.

5. Concluding remarks

We have tried to make the present study of the chiral zero modes’ phase space reasonably
self-contained and have, hence, included some known material. It may be, therefore, useful
to list at this point what appears to us as the main new features in our treatment.

We find explicitly the correspondence between the WZ term ρ(a−1Mpa) (rendering the
zero modes’ symplectic form (2.10) closed) and the solutions of the CYBE.

It is essential for the present treatment of the SU(n) case that the determinant det
(
ai

α

)
of the zero modes’ n × n matrix is set equal to an (essentially unique) pseudoinvariant q-
polynomial in the su(n) weights (see (1.7)). Accordingly, the symplectic form (2.10) in the
(n − 1)(n + 2)-dimensional zero modes’ phase manifold Mq necessarily contains, for n > 2,

a term ωq(Mp) depending only on the diagonal monodromy.
The counterpart of ωq(Mp) in the symplectic form of the chiral WZNW model with

diagonal monodromy, being closed by itself, is often omitted. This additional term is necessary
in order to reproduce upon quantization the basic exchange relations involving the dynamical
R-matrix of [37, 1, 15, 32].

The expression for ωq is simpler—and easier to derive—in the extended (n(n + 1)-
dimensional) phase space Mex

q spanned by pi and a
j
α, i, j, α = 1, . . . , n, the form ωex

q (2.28)
being nontrivial even for n = 2 (yielding, in the undeformed limit, the standard symplectic
structure on C2 viewed as a Kähler manifold in that case).

The Dirac brackets of the physically interesting quantities a
j
α and pj� coincide with their

Poisson brackets since they Poisson commute with one of the constraints and can be, hence,
derived working in the (more symmetric) extended phase space.
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Expression (3.30) for the Poisson bivector in Mex
q allows us to directly compute the

Poisson brackets of interest.
The quantum theory of chiral zero modes has been only briefly reviewed in section 4

concluding with the formulation of an open problem related to the concept of a model space
for the quantum universal enveloping algebra Uq(s�n) for q a root of unity.
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Appendix

We begin by reproducing the properties of the polarized Casimir operators Cmn relevant for
the proof of the CYBE (for both constant and ‘dynamical’, i.e. p-dependent, r±):

[C12, C13 + C23] = 0 = [C12 + C13, C23]. (A.1)

For G = SU(n), C12 is given, essentially, by the permutation operator (4.9):

C12 = P12 − 1

n
1112 or C

j1j2
�1�2

= δ
j1j2
�2�1

− 1

n
δ

j1j2
�1�2

(
δ

jk

�m := δ
j

� δ
k
m

)
(A.2)

and equation (A.1) gives

[C12, C13 + C23] + [C13, C23] = −[C12, C23] = (
δ

j1j2j3
�2�3�1

− δ
j1j2j3
�3�1�2

)
. (A.3)

Next we verify that the mixed (r–C) terms in the CYBE (3.38) (or (3.10)) vanish,

[r12(p), C13 + C23] + [r12(p), C23 − C12] + [C12 + C13, r23(p)] = 0 (A.4)

using, e.g., the general identities Pabrbc = racPab for a, b, c all different, as well as
skewsymmetry of rab = −rba. Computing the sum of commutators in (3.38), we find

([r12(p), r13(p) + r23(p)] + [r13(p), r23(p)])j1j2j3
�1�2�3

= π2

k2

((
cj1j2 + cj2j3

)
cj1j3 − cj1j2cj2j3

)(
δ

j1j2j3
�2�3�1

− δ
j1j2j3
�3�1�2

)
(A.5)

where

cj� := cot
π

k
pj� = −c�j j 	= � c�� := 0. (A.6)

On the other hand, (3.39) gives

Alt(dr) = π

k

(
δj1j2c

′
j2j3

+ δj2j3c
′
j1j3

+ δj1j3c
′
j1j2

)(
δ

j1j2j3
�2�3�1

− δ
j1j2j3
�3�1�2

)
(A.7)

where

c′
j� := −π

k

1

sin2 π
k
pj�

= c′
�j j 	= � c′

�� := 0. (A.8)



3874 P Furlan et al

To prove (3.38), it suffices to combine (A.3)–(A.8) with one of the following relations
(depending on whether all three indices j1, j2, j3 are different or not):

(cot α + cot β)cot(α + β) − cot α cot β = −1 (A.9)

cot2 α − 1

sin2 α
= −1. (A.10)
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